

Inaccurate Beliefs and Cyclical Labor Market Dynamics

Jenny Siqin Ding

University of Maryland

September 29, 2025

Motivation

- Long-standing questions in the macro labor market:
 - Why is unemployment so volatile and persistent?
- New channel: **Inaccurate beliefs about aggregate productivity**
 - New empirical evidence on household beliefs and labor market decisions
 - Model of belief formation to study their implications on aggregate fluctuations
- Also provides insights to:
 - Why is the job separations more cyclical for high-wage workers? [Mueller \(2017\)](#)
 - Why similar workers have drastically different transition patterns across employment states? [Hall and Kudlyak \(2019\)](#) [Ahn et al. \(2023\)](#) [Gregory et al. \(2025\)](#)

This Paper

- New evidence on beliefs from survey data:
 - Household beliefs about unemployment systematically lag actual changes
 - Workers with more optimistic expectations about labor market prospects demand higher wages
- DMP model with imperfect info
 - The distribution of worker beliefs are lagged and dispersed
 - Workers bargain for wages with firms based on their own beliefs
 - The distribution of worker beliefs affects firm's vacancy posting and layoffs
 - Better informed firms (share a common belief):
 - Bargain for wages, make hiring and layoff decisions according to their beliefs

Main Findings

- Aggregate fluctuations
 - Worker–firm belief gap drives the volatility in job creation ⇒ **Amplification**
 - Dispersion in worker beliefs affects layoffs
 - ⇒ Optimistic workers are hired at higher wages and face higher separation risks
 - ⇒ **Composition of unemployment**
 - Firm learning **dampens** the volatility and generates more **persistence**
- Heterogeneous transition patterns
 - Differences in learning rate and persistence in biases ⇒ **Heterogeneity**

Literature

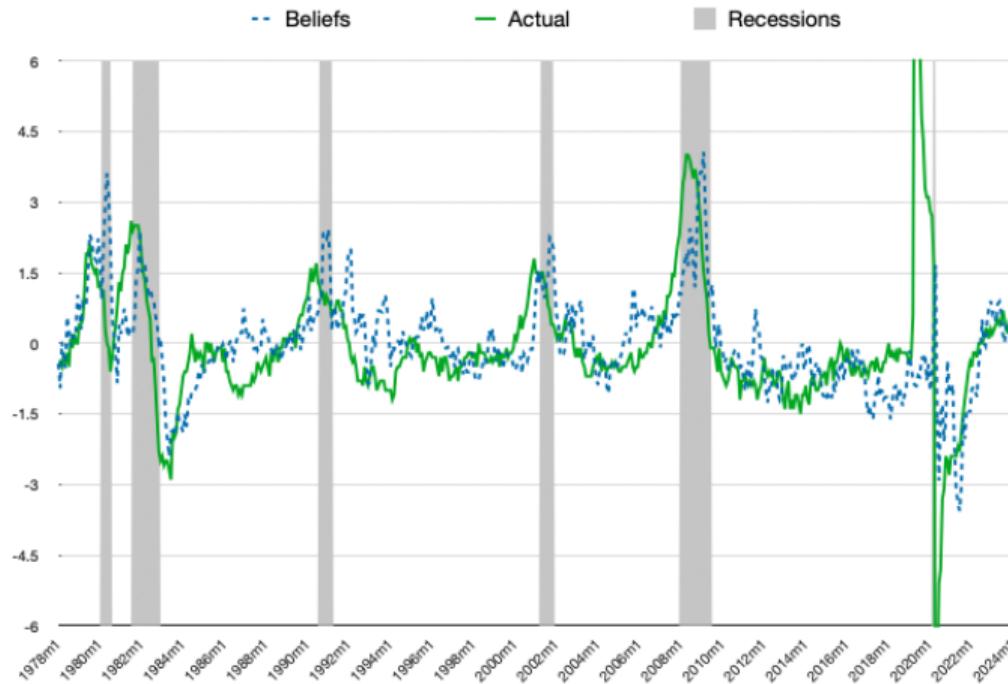
- Survey evidence on beliefs and labor market decisions/outcomes: Campbell et al. (2007), Conlon et al. (2018), Mitra (2023), Balleer et al. (2024), Jäger et al. (2024)

Contribution: New GE framework

- DMP models with information friction about aggregate productivity in GE:
 - Asymmetric beliefs about the aggregate: Menzio (2023), Morales-Jiménez (2022)
 - Biased beliefs about the aggregate: Mitra (2024), Bhandari et al. (2025)

Contribution: Dispersion + endogenous separations + role of firm beliefs

- Other DMP models with imperfect info:
 - Firm's private information on match quality: Azariadis and Stiglitz (1983), Kennan (2010)
 - Worker's private information on types: Acharya and Wee (2020), Birinci et al. (2025)


Contribution: Belief formation on aggregate productivity disciplined by survey data

- Connect to the larger literature on amplification and persistence: Shimer (2005), Elsby and Michaels (2013), Ljungqvist and Sargent (1998), Marimon and Zilibotti (1999), Hornstein et al. (2007)...
 - Stick-wages: Hall (2005), Shimer (2010), Gertler and Trigari (2009), Gertler et al. (2020)...

Roadmap

- Motivation evidence from survey data
- DMP model with imperfect information
- Calibration
- Quantitative results about aggregate fluctuations
 - Amplification and persistence of aggregate shocks
 - Comovements of pre-displacement wage and unemployment rate
 - Heterogeneous transition patterns

Household beliefs lag the actual change in unemployment rate

Perceived and actual changes in unemployment rate (Both standardized). Source: MSC, FRED.

- Du et al. (2024) also documents a lag using SCE

More Optimistic Workers have Higher Reservation Wage of Working

- Survey of Consumer Expectations: 2014m3–2023m7
- Cross-section: Workers expecting higher job-finding rates set higher reservation wages
- Time series: Larger increases in unemployment expectations are associated with larger reductions in reservation wages

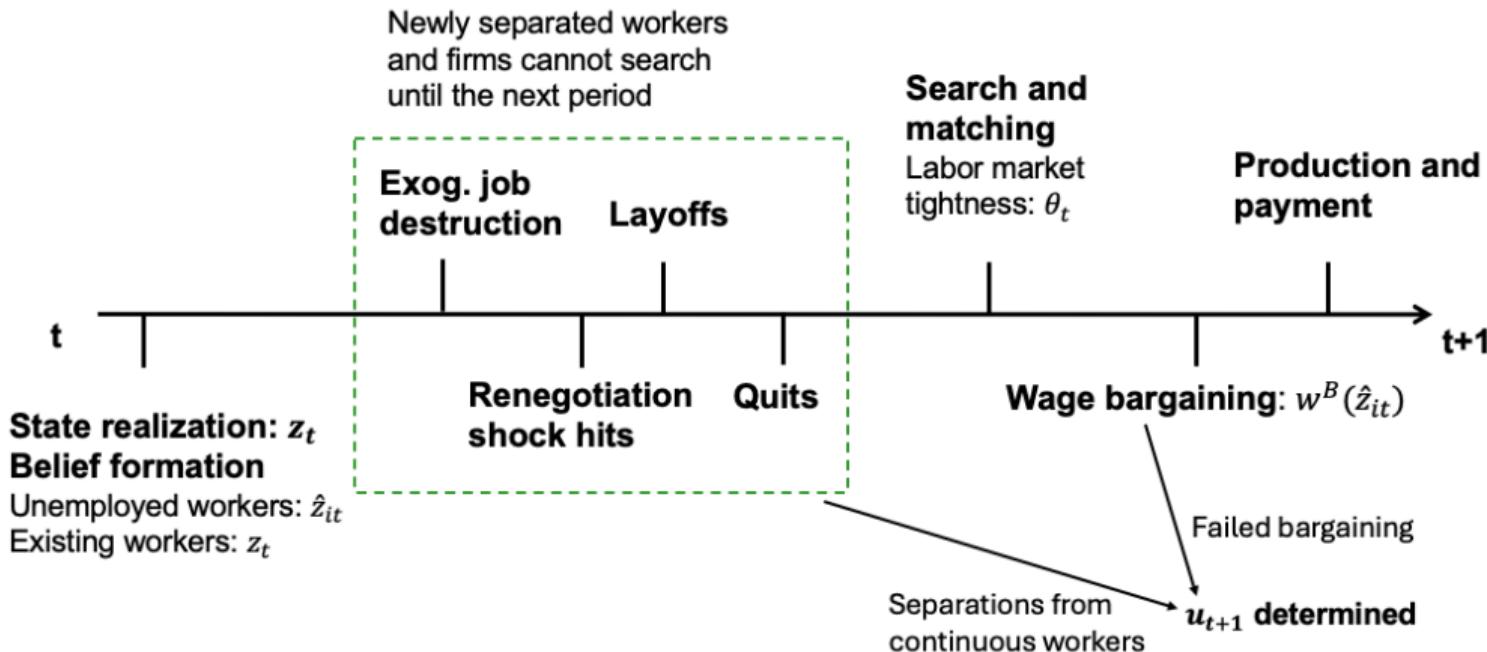

Survey Questions and Regression equations

Table: Beliefs and Reservation Wages $\log(w^r)$

	Exp job-finding rate			Exp unemployment rate		
	employed (1)	employed (2)	unemployed (3)	all (4)	employed (5)	non-employed (6)
Beliefs	0.178*** (0.032)	0.102*** (0.027)	0.005* (0.003)	-0.114** (0.053)	-0.096* (0.052)	-0.132 (0.128)
Household income	✓		✓			
Worker income		✓				
Demographics	✓	✓	✓			
Worker FE				✓	✓	✓
Time FE	✓	✓	✓	✓	✓	✓
Observations	19,035	18,989	802	28,318	19,049	8,231
R ²	0.215	0.364	0.133	0.485	0.514	0.419

DMP Model with Inaccurate Beliefs

Model: Timeline

Aggregate Productivity and Belief Formation

- Aggregate productivity: $z_t = \rho z_{t-1} + \varepsilon_t, \quad \varepsilon_t \sim \mathcal{N}(0, \sigma_z^2)$
- Heterogeneous worker beliefs: $\hat{z}_{it} = \hat{z}_t^w + \eta_{it}, \quad \eta_{it} \sim \mathcal{N}(0, \sigma_s^2) \Rightarrow$ dispersion

$$\hat{z}_t^w = \hat{z}_{t-1}^w + \underbrace{\gamma^w (z_{t-1} - \hat{z}_{t-1}^w)}_{\text{forecast error}}, \quad 0 < \gamma^w < 1 \Rightarrow \text{delay}$$

\Rightarrow Distribution of worker beliefs $G_t \sim \mathcal{N}(\hat{z}_t^w, \sigma_s^2)$

(Perceived distribution of worker beliefs $\hat{G}_{it} \sim \mathcal{N}(\hat{z}_{it}, \sigma_s^2)$)

Strategic Considerations: Firms

- Workers and firms bargain \Rightarrow beliefs about others' expectations affect decisions
- Assume firms observe the true productivity z_t and the actual distribution of current worker beliefs G_t \Rightarrow relaxed later
 - \Rightarrow firms use z_t and G_t to compute
 - the expected distribution of future worker beliefs
 - workers' value functions: expected reservation wages, and bargaining wages
 - resulting labor market tightness and own reservation wage

Strategic Considerations: Workers

- Each worker believes their own info is accurate and that firms also use this belief in wage setting
- Worker i perceives that other workers' beliefs are distributed as \hat{G}_{it} , centered on \hat{z}_{it}
 - ⇒ worker i uses \hat{z}_{it} and \hat{G}_{it} to compute
 - the *perceived* value functions of firms, labor market tightness, job-finding rate, firms' reservation wage
 - own reservation wage and bargained wage

Value Functions: Firms

- Dist. of beliefs affect the value of a filled job and firm's vacancy posting incentives
- Value of a filled job:

$$(1) \quad J(z, w) = z - w + \beta(1 - \delta) \mathbb{E} \left[\lambda \underbrace{\mathbb{1}(w^r(z') < w)}_{\text{Workers might quit}} \underbrace{\max\{J(z', w), V(z')\}}_{\text{Whether to layoff}} \right. \\ \left. + (1 - \lambda) \underbrace{J(z', w^B(z'))}_{\text{Renegotiation}} \right]$$

- Value of vacancy and free entry condition:

$$(2) \quad V(z) = -\kappa + \beta \mathbb{E} q(\theta) \left\{ \underbrace{\int_{\hat{z}_i} \max\{J(z', w^B(\hat{z}_i)), V(z')\} dG}_{\text{Expected value of a new hire}} \right\} = 0$$

- Firm's acceptable wages:

$$(3) \quad \{w : w \leq \bar{w}^f(z) \text{ and } J(z, \bar{w}^f(z)) = 0\}$$

Perceived Value Functions: Workers

- Worker's belief affects their perceived job-finding rate and layoff prob.
- Perceived value of a filled job

$$(4) \quad J(\hat{z}, w) = \hat{z} - w + \beta(1 - \delta) \hat{\mathbb{E}} \left[\lambda \mathbb{1}(w^r(\hat{z}') < w) \max\{J(z', w), V(z')\} \right. \\ \left. + (1 - \lambda) J(z', w^B(\hat{z}')) \right]$$

- Perceived value of vacancy \Rightarrow Perceived job-finding rate $f(\hat{\theta})$

$$(5) \quad V(\hat{z}) = -\kappa + \beta q(\hat{\theta}) \hat{\mathbb{E}} \int_{\hat{z}_i} \max\{J(z', w^B(\hat{z}_i)), 0\} d\hat{G} = 0$$

- Perceived reservation wage of the firm

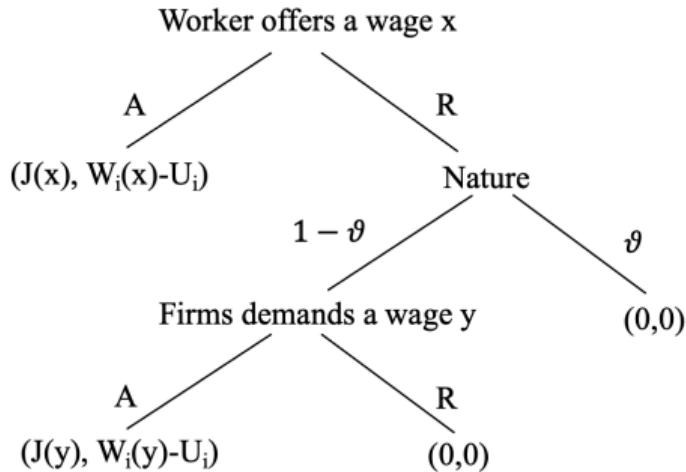
$$(6) \quad \{w : w \leq \hat{w}^f(\hat{z}) \text{ and } J(\hat{z}, \hat{w}^f(\hat{z})) = 0\}$$

Perceived Value Functions: Workers

- Perceived strategies of the firm affects the worker's perceived value functions
- Worker's perceived value of working:

$$(7) \quad W(\hat{z}, w) = w + \beta \hat{\mathbb{E}} \left\{ \underbrace{\left[\delta + (1 - \delta) \lambda \mathbb{1}(w > \bar{w}^f(\hat{z}')) \right] U(\hat{z}')}_{\text{Involuntary separations}} \right. \\ \left. + \underbrace{(1 - \delta) \lambda \mathbb{1}(w < \bar{w}^f(\hat{z}')) \max\{W(\hat{z}', w), U(\hat{z}')\}}_{\text{Quits}} \right. \\ \left. + \underbrace{(1 - \delta)(1 - \lambda) W(\hat{z}', w^B(\hat{z}'))}_{\text{Renegotiation}} \right\}$$

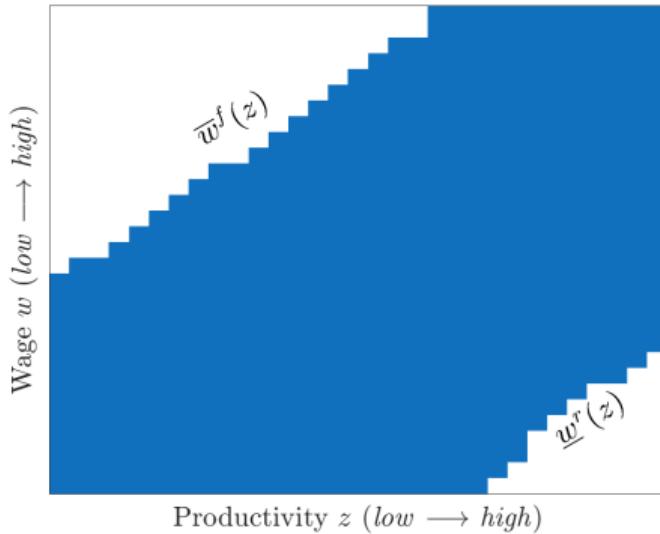
Perceived Value Functions: Workers


- Value of unemployment:

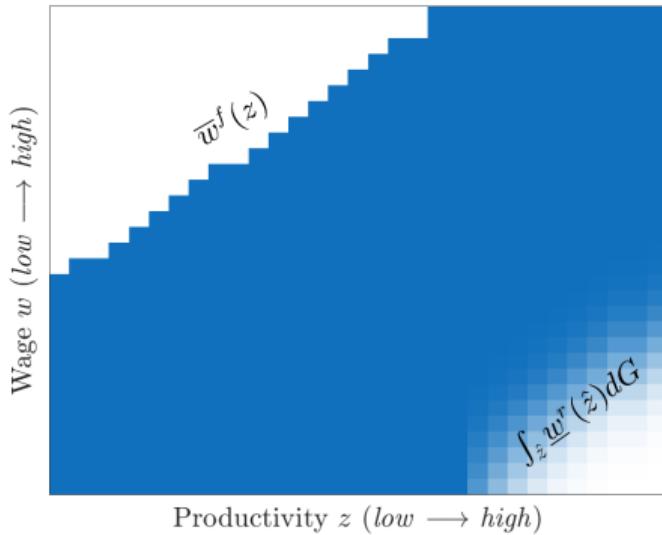
$$(8) \quad U(\hat{z}) = b + \beta \hat{\mathbb{E}} \left\{ \textcolor{red}{f}(\hat{\theta}) W(\hat{z}', w^B(\hat{z})) + (1 - \textcolor{red}{f}(\hat{\theta}')) U(\hat{z}') \right\}$$

- Worker's perceived value functions determine
 - The range of acceptable wages:

$$(9) \quad \{w : w \geq \underline{w}^r(\hat{z}) \quad \text{and} \quad W(\hat{z}, \underline{w}^r(\hat{z})) = U(\hat{z})\}$$


Model: Wage Bargaining Game

- Worker makes the first offer: giving firms $1 - \vartheta$ of the *perceived* matching surplus, *thinking* that the firm will always accept
- Firms accept if it's below its reservation wage
- Otherwise, the match is dissolved


Steady State Rejection Probability: Full Info

- Wage rigidities + two-sided lack of commitment \Rightarrow endogenous separations
 - Firms lay off workers when the true state is low and current wage is high
 - Workers quit the job when their belief is high and current wage is low
 - All bargaining result in matches

Steady State Rejection Probability: Noisy Beliefs

- Noisy beliefs create a region with nonzero probability of failed negotiation

Model Mechanism

- **Amplification:** Lagged worker beliefs \Rightarrow slow adjustment for wages of new hires \Rightarrow larger volatility in job creation
- **Persistence:** Firm learning \Rightarrow dampened and sluggish response in all variables
- Firms hire high-wage workers, knowing they can fire them later
- Dispersion in beliefs \Rightarrow wage dispersion \Rightarrow \uparrow separations of high wage workers in recessions
 - \Rightarrow Shift in the composition of unemployment
 - \Rightarrow Heterogeneity

Calibration

Calibration: Belief Parameters

- MSC 1978m1-2020m2
- Cross-sectional dispersion in beliefs
 - Calibrate σ_s to match time-average of $\sigma_u = \frac{1}{T} \sum_t \tilde{\sigma}_t = 0.2$ in data
- Worker's learning rate
 - Calibrate learning rate γ^w to match learning rate in data (0.093)

(10) $UNEMPL_t^e = \beta_1 UNEMPL_{t-1} + \beta_2 UNEMPL_{t-1}^e + \epsilon_t$

Reg results

Parameters

	Description	Value	Source
ρ	Persistence of z	0.983	GHT
σ_z	Standard Deviation of z	0.007	GHT
β	Discount factor	0.997	GHT (3% interest)
λ	Renegotiation frequency	11/12	GHT (every 4 quarters)
α	Matching elasticity to v	0.5	Blanco et al. (2024)
ϑ	Bargaining power of the worker	0.6	within the range

- GHT = Gertler et al. (2020)

	Description	Value	Target	Moment
δ	Exog job destruction rate	0.018	Unemploy. rate = 6.1%	6.1%
b	Unemp benefit	0.650	0.7 of median state productivity	0.65
A	Matching efficiency	0.328	Job finding rate = 27.7%	27.8%
κ	Cost of vacancy posting	0.289	Labor market tightness = 0.720	0.719
σ_s	Std. dev. of beliefs	0.019	MSC $\sigma_u = 0.20$	0.199
γ^w	Learning rate of HH	0.085	MSC $\beta^1 = 0.093$	0.095

Quantitative Results

- Aggregate fluctuations
- Cyclical job separations
- Distributional consequences

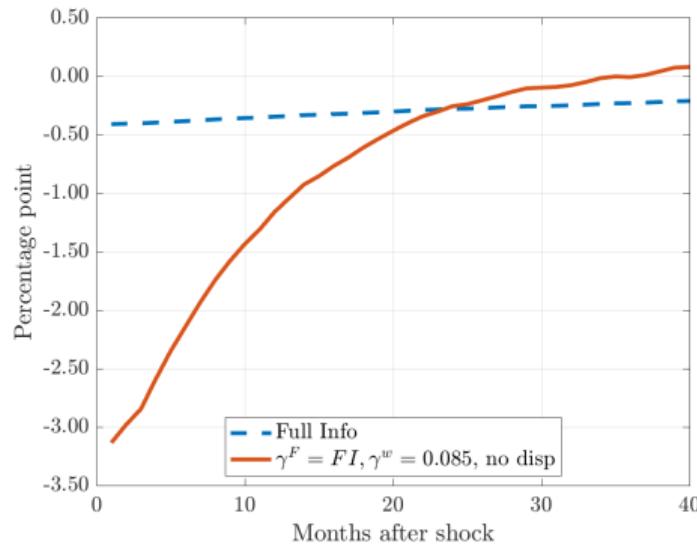
Business Cycle Summary Statistics

	p	u	f	s	θ
<i>Panel A: Data</i>					
Standard Deviation	0.010	0.103	0.053	0.067	0.229
Quarterly Autocorrelation	0.746	0.934	0.871	0.773	0.936
<i>Panel B: Full Info</i>					
Standard Deviation	0.014	0.025	0.020	0.012	0.041
Quarterly Autocorrelation	0.727	0.795	0.719	0.505	0.719
<i>Panel C: HH Learning</i>					
Standard Deviation					
Quarterly Autocorrelation					
<i>Panel D: HH Learning + Dispersion</i>					
Standard Deviation					
Quarterly Autocorrelation					
<i>Panel E: HH Learning + Dispersion + Firm Learning</i>					
Standard Deviation					
Quarterly Autocorrelation					

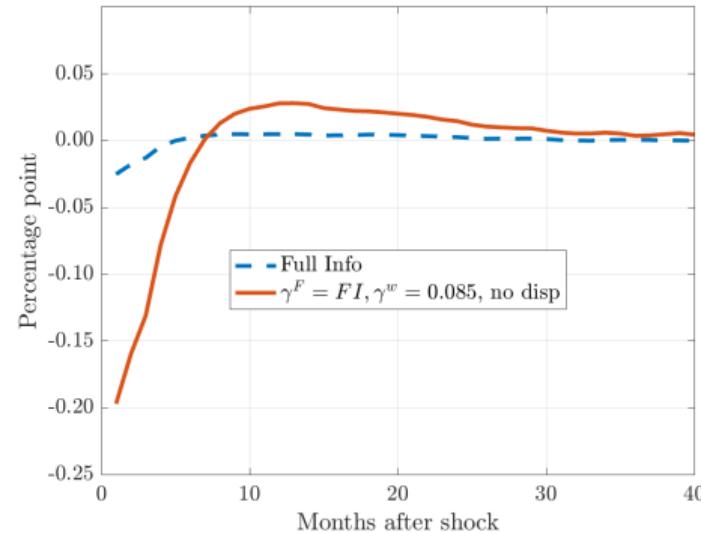
Business Cycle Summary Statistics

	p	u	f	s	θ
<i>Panel A: Data</i>					
Standard Deviation	0.010	0.103	0.053	0.067	0.229
Quarterly Autocorrelation	0.746	0.934	0.871	0.773	0.936
<i>Panel B: Full Info</i>					
Standard Deviation	0.014	0.025	0.020	0.012	0.041
Quarterly Autocorrelation	0.727	0.795	0.719	0.505	0.719
<i>Panel C: HH Learning</i>					
Standard Deviation	0.014	0.113	0.140	0.017	0.280
Quarterly Autocorrelation	0.751	0.782	0.616	0.548	0.546
<i>Panel D: HH Learning + Dispersion</i>					
Standard Deviation					
Quarterly Autocorrelation					
<i>Panel E: HH Learning + Dispersion + Firm Learning</i>					
Standard Deviation					
Quarterly Autocorrelation					

Business Cycle Summary Statistics

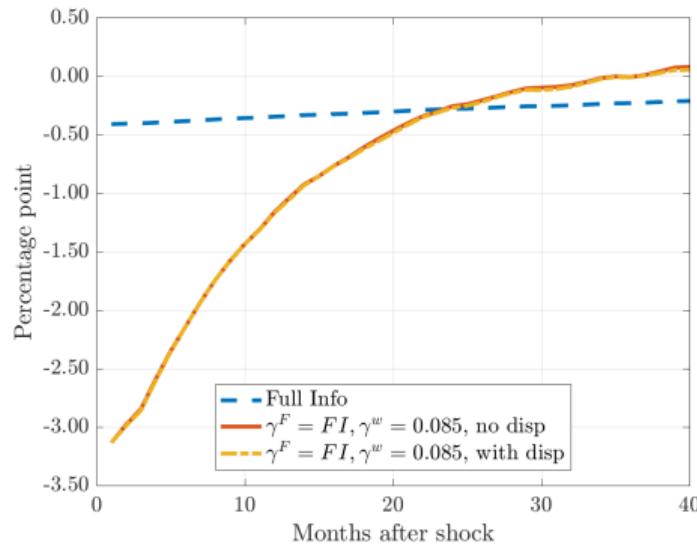

	<i>p</i>	<i>u</i>	<i>f</i>	<i>s</i>	θ
<i>Panel A: Data</i>					
Standard Deviation	0.010	0.103	0.053	0.067	0.229
Quarterly Autocorrelation	0.746	0.934	0.871	0.773	0.936
<i>Panel B: Full Info</i>					
Standard Deviation	0.014	0.025	0.020	0.012	0.041
Quarterly Autocorrelation	0.727	0.795	0.719	0.505	0.719
<i>Panel C: HH Learning</i>					
Standard Deviation	0.014	0.113	0.140	0.017	0.280
Quarterly Autocorrelation	0.751	0.782	0.616	0.548	0.616
<i>Panel D: HH Learning + Dispersion</i>					
Standard Deviation	0.014	0.115	0.139	0.020	0.279
Quarterly Autocorrelation	0.727	0.785	0.626	0.374	0.627
<i>Panel E: HH Learning + Dispersion + Firm Learning</i>					
Standard Deviation					
Quarterly Autocorrelation					

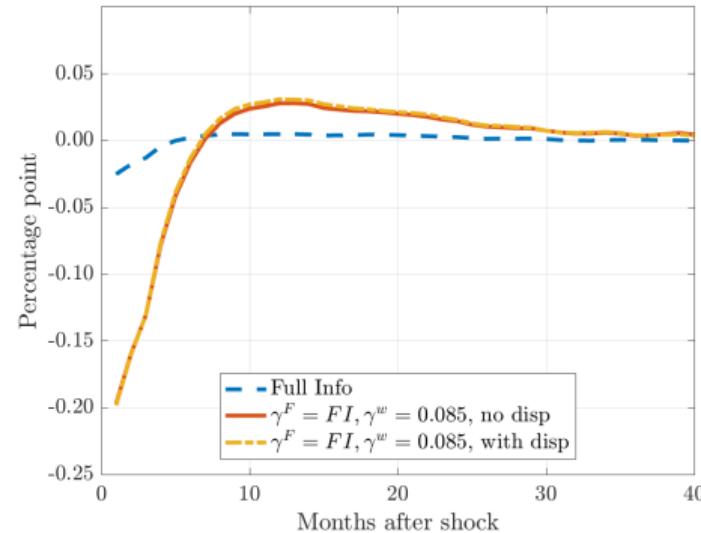
Business Cycle Summary Statistics


	<i>p</i>	<i>u</i>	<i>f</i>	<i>s</i>	θ
<i>Panel A: Data</i>					
Standard Deviation	0.010	0.103	0.053	0.067	0.229
Quarterly Autocorrelation	0.746	0.934	0.871	0.773	0.936
<i>Panel B: Full Info</i>					
Standard Deviation	0.014	0.025	0.020	0.012	0.041
Quarterly Autocorrelation	0.727	0.795	0.719	0.505	0.719
<i>Panel C: HH Learning</i>					
Standard Deviation	0.014	0.113	0.140	0.017	0.280
Quarterly Autocorrelation	0.751	0.782	0.616	0.548	0.546
<i>Panel D: HH Learning + Dispersion</i>					
Standard Deviation	0.014	0.115	0.139	0.020	0.279
Quarterly Autocorrelation	0.727	0.785	0.626	0.374	0.627
<i>Panel E: HH Learning + Dispersion + Firm Learning ($\gamma^F = 0.5$)</i>					
Standard Deviation	0.014	0.092	0.110	0.015	0.219
Quarterly Autocorrelation	0.727	0.814	0.705	0.505	0.705

IRF: Belief Asymmetry Amplifies the Volatility in Job Creation

- Sluggish adjustment for household beliefs generates sticky wages for new hires
⇒ further reduce firm's vacancy posting incentives
- Larger drop in job-finding rate and job creation

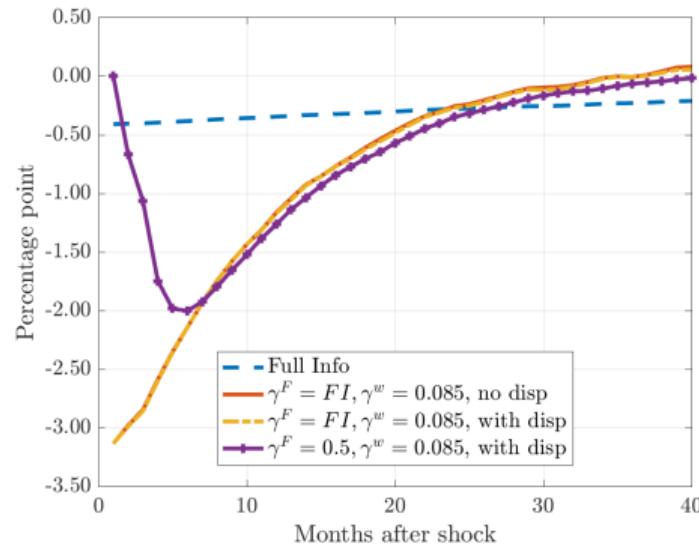

Job-finding probability


New hires

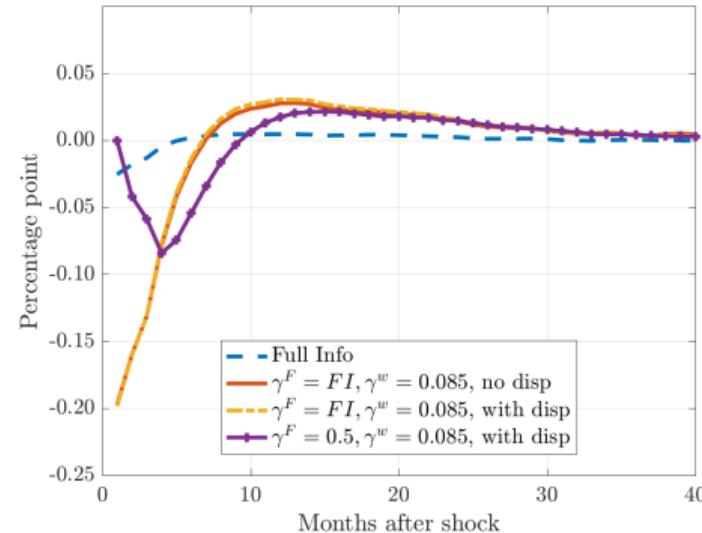
IRF: Belief Asymmetry Amplifies the Volatility in Job Creation

- Sluggish adjustment for household beliefs generates sticky wages for new hires
⇒ further reduce firm's vacancy posting incentives
- Larger drop in job-finding rate and job creation

Job-finding probability



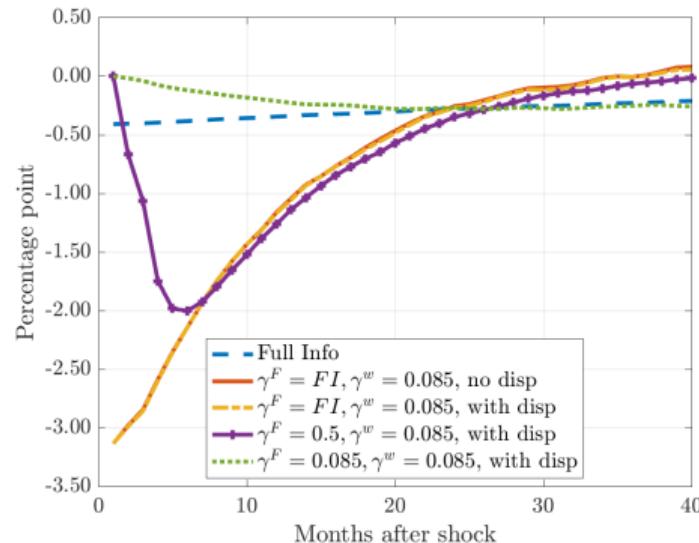
New hires


IRF: Belief Asymmetry Amplifies the Volatility in Job Creation

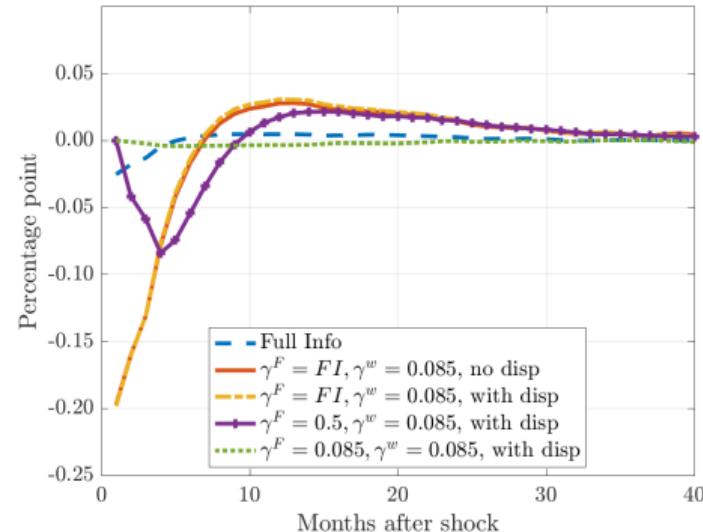
Model with firm learning

- Sluggish adjustment for household beliefs generates sticky wages for new hires
⇒ further reduce firm's vacancy posting incentives
- Larger drop in job-finding rate and job creation

Job-finding probability

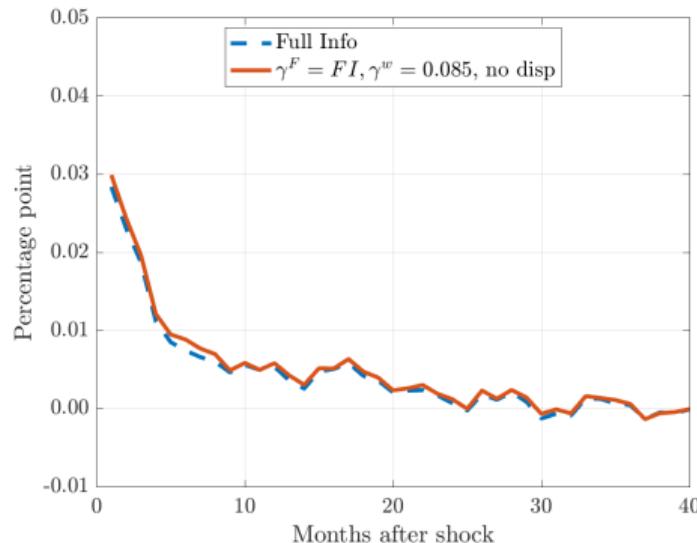


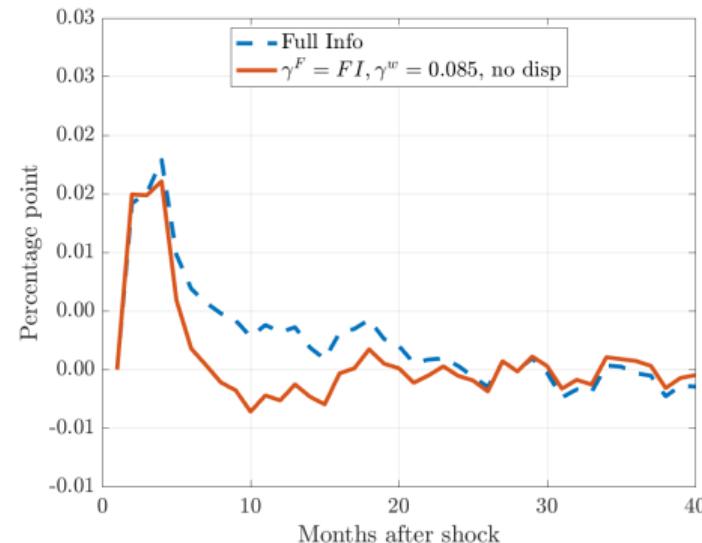
New hires


IRF: Belief Asymmetry Amplifies the Volatility in Job Creation

Model with firm learning

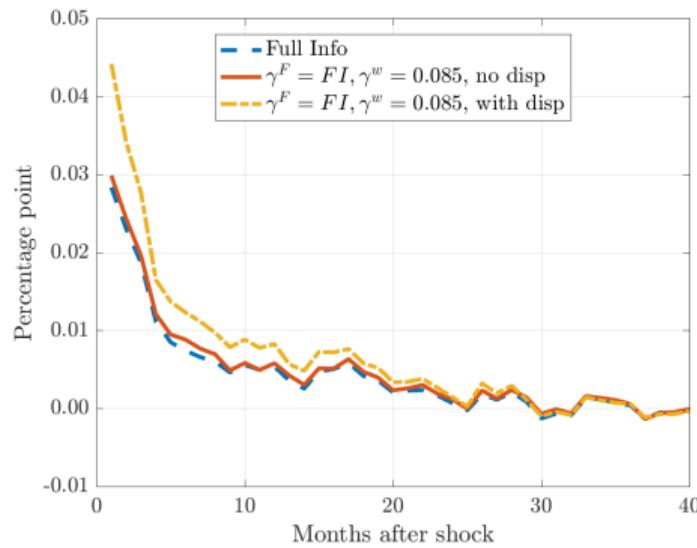
- Sluggish adjustment for household beliefs generates sticky wages for new hires
⇒ further reduce firm's vacancy posting incentives
- Larger drop in job-finding rate and job creation


Job-finding probability


New hires

IRF: Dispersion in Beliefs Amplifies the Response in Separations

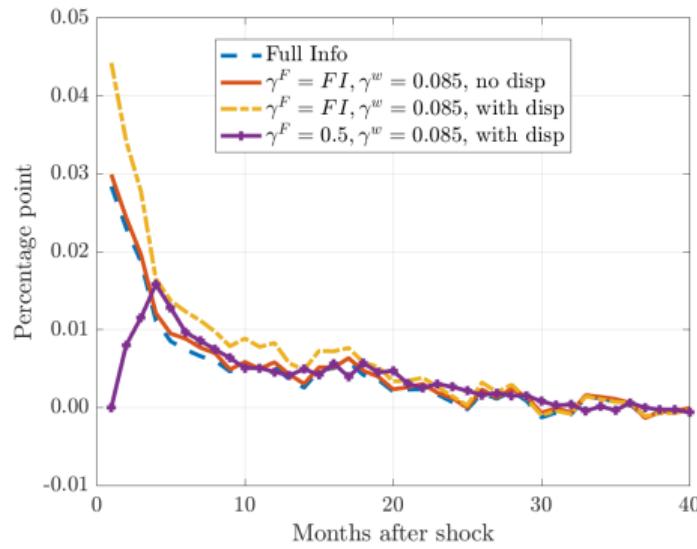
- Larger belief dispersion generates larger layoffs
- Firm learning dampens this result

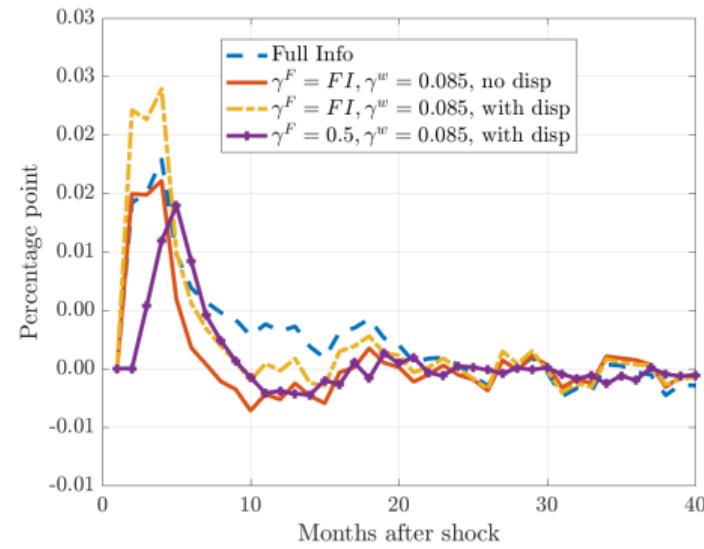

Layoffs

Job Separations

IRF: Dispersion in Beliefs Amplifies the Response in Separations

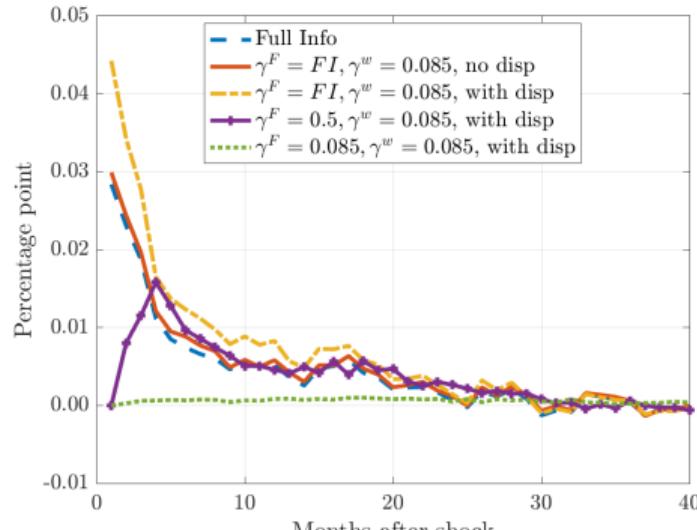
- More workers are hired closed to firm's layoff threshold
- The pool of unemployment shifts towards high-wage workers during recessions
(Mueller (2017))

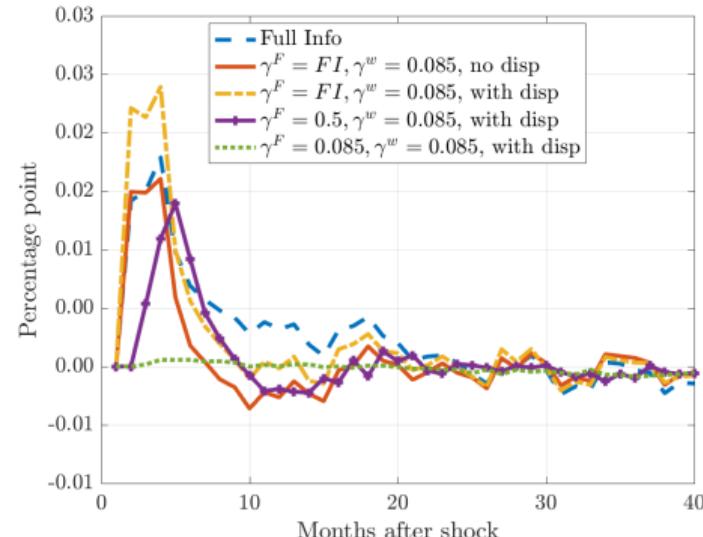

Layoffs


Job Separations

IRF: Dispersion in Beliefs Amplifies the Response in Separations

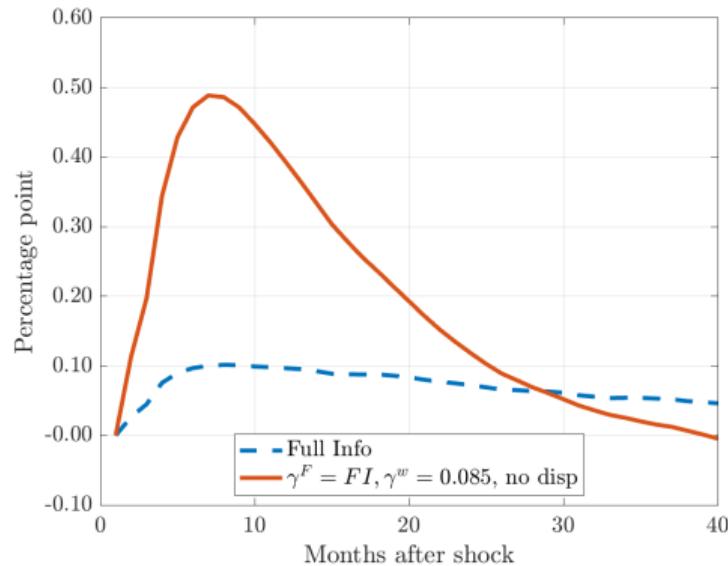
- More workers are hired closed to firm's layoff threshold
- The pool of unemployment shifts towards high-wage workers during recessions
(Mueller (2017))


Layoffs

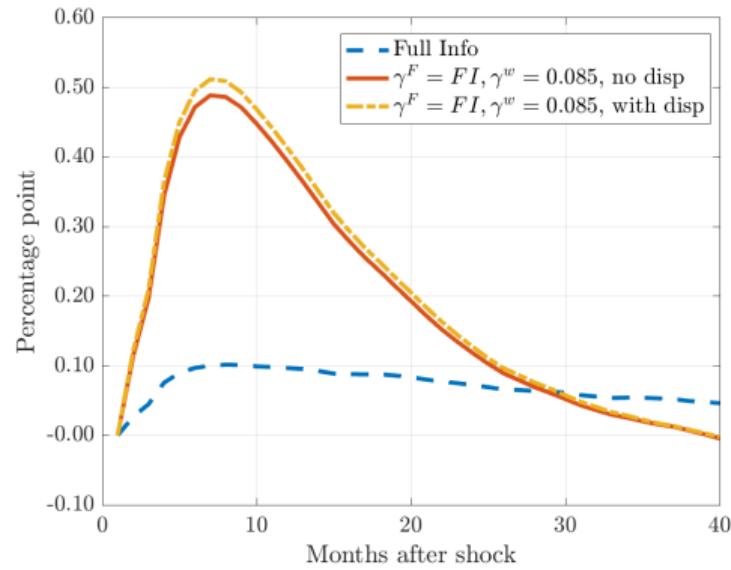

Job Separations

IRF: Dispersion in Beliefs Amplifies the Response in Separations

- More workers are hired closed to firm's layoff threshold
-

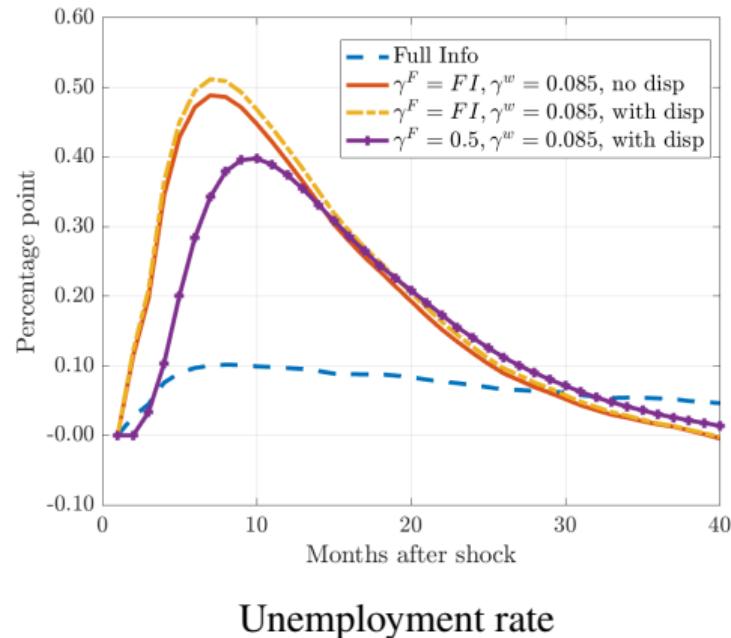

Layoffs

Job Separations

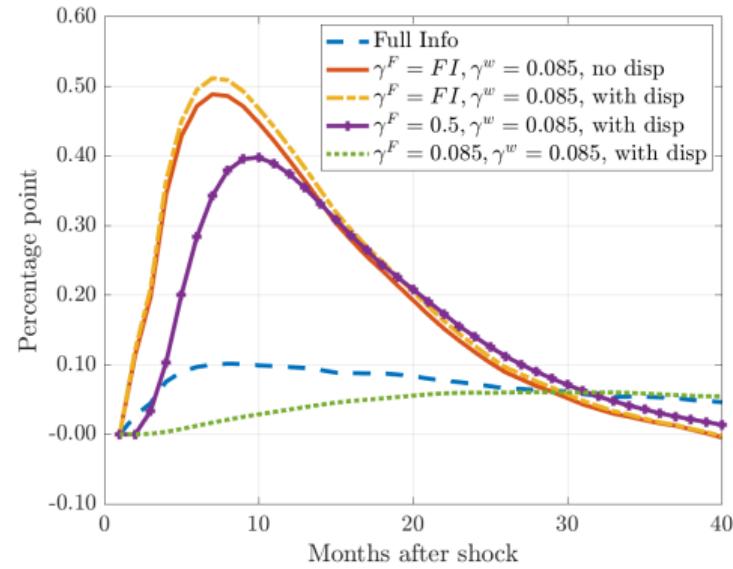

IRF: Belief Asymmetry and Dispersion Generates Larger volatility in Unemployment Rate

- Asymmetry \Rightarrow Larger drop in job-finding rate \Rightarrow smaller outflows
- Dispersion \Rightarrow Larger layoffs \Rightarrow larger inflows
- Firm learning \Rightarrow dampens volatility and generates more persistence

IRF: Belief Asymmetry and Dispersion Generates Larger volatility in Unemployment Rate

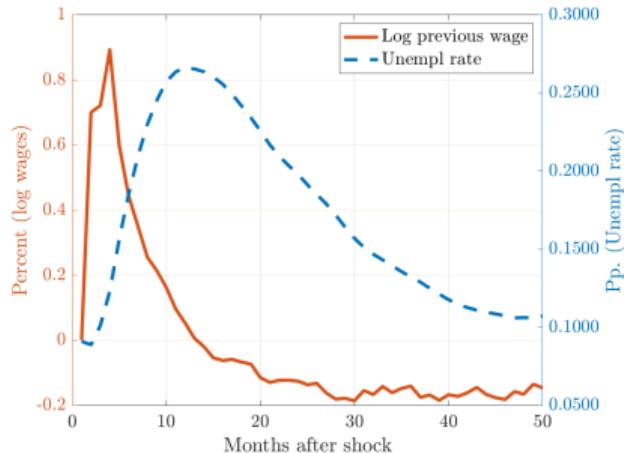

- Asymmetry \Rightarrow Larger drop in job-finding rate \Rightarrow smaller outflows
- Dispersion \Rightarrow Larger layoffs and unsuccessful renegotiations \Rightarrow larger inflows

Unemployment rate


IRF: Belief Asymmetry and Dispersion Generates Larger volatility in Unemployment Rate

- Asymmetry \Rightarrow Larger drop in job-finding rate \Rightarrow smaller outflows
- Dispersion \Rightarrow Larger layoffs and unsuccessful renegotiations \Rightarrow larger inflows

IRF: Belief Asymmetry and Dispersion Generates Larger volatility in Unemployment Rate


- Asymmetry \Rightarrow Larger drop in job-finding rate \Rightarrow smaller outflows
- Dispersion \Rightarrow Larger layoffs and unsuccessful renegotiation \Rightarrow larger inflows

High-wage workers face more cyclical separations

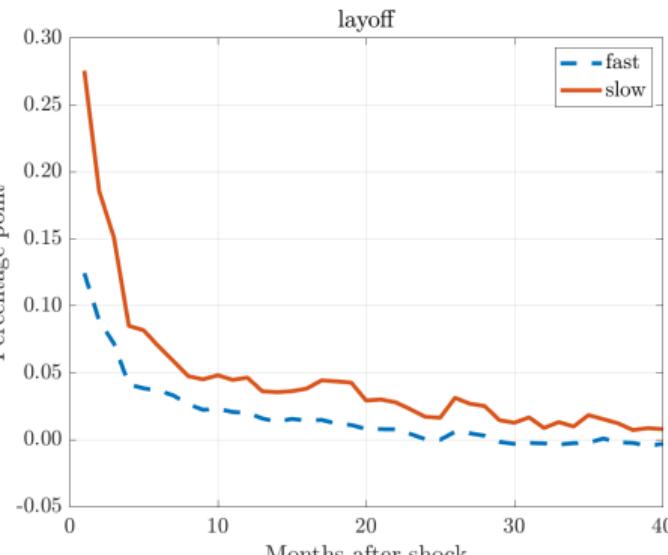
- Mueller (2017): Comovements of pre-displacement wage and unemployment rate
- Driven by higher cyclicality of job separations among high-wage workers; similar job-finding rates

CPS evidence

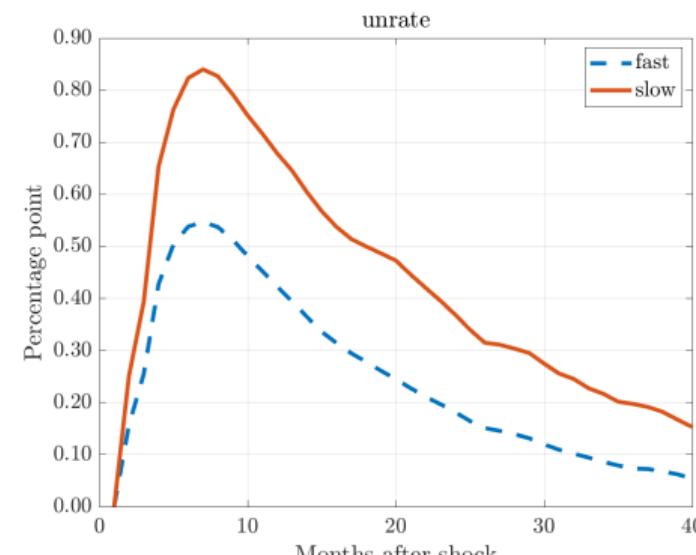
Comovements of pre-displacement wage and unemployment rate

Distributional Consequences of Inaccurate Beliefs

- Empirical Observation: Heterogeneous transition patterns across workers (Gregory et al. (2025), Hall and Kudlyak (2019), Ahn et al. (2023))
- Differences in learning rate or persistence in biases can partially explain this
- Two types of workers with different learning rates


$$(11) \quad \hat{z}_{it}^{fast} = \hat{z}_{t-1}^{fast} + \gamma^{fast} (z_{t-1} - \hat{z}_{t-1}^{fast}) + \eta_{it}$$

$$(12) \quad \hat{z}_{it}^{slow} = \hat{z}_{t-1}^{slow} + \gamma^{slow} (z_{t-1} - \hat{z}_{t-1}^{slow}) + \eta_{it}$$


- $\gamma^{slow} = 0.02$, $\gamma^{fast} = 0.20$

Diff. in Learning Rates Helps Explain Heterog. Transition Patterns

- Slow updating workers are relatively more optimistic at the beginning of the recession
⇒ Hired at higher wages ⇒ Higher layoff rates and Unemployment rate

Layoffs

Unemployment rate

Conclusion

- Theory about how systematic biases and idiosyncratic noise in beliefs about the aggregate affects labor market fluctuations and heterogeneous transition patterns
- Future work:
 - Interaction of noisy beliefs about aggregate, worker private info, and misperception of employers
 - Implications for job acceptance, search/on-the-job search, future separation risks

References

Acharya, S. and Wee, S. L. (2020). Rational inattention in hiring decisions. *American Economic Journal: Macroeconomics*, 12(1):1–40.

Ahn, H. J., Hobijn, B., and Şahin, A. (2023). The dual us labor market uncovered. Technical report, National Bureau of Economic Research.

Azariadis, C. and Stiglitz, J. E. (1983). Implicit contracts and fixed price equilibria. *The Quarterly Journal of Economics*, pages 2–22.

Balleer, A., Duernecker, G., Forstner, S., and Goensch, J. (2024). *Biased expectations and labor market outcomes: Evidence from German survey data and implications for the East-West wage gap*. Number 1062. Ruhr Economic Papers.

Bhandari, A., Borovička, J., and Ho, P. (2025). Survey data and subjective beliefs in business cycle models. *Review of Economic Studies*, 92(3):1375–1437.

Birinci, S., See, K., and Wee, S. L. (2025). Job applications and labour market flows. *Review of Economic Studies*, 92(3):1438–1496.

References (cont.)

Blanco, A., Drenik, A., Moser, C., and Zaratiegui, E. (2024). A theory of labor markets with inefficient turnover. Technical report, National Bureau of Economic Research.

Campbell, D., Carruth, A., Dickerson, A., and Green, F. (2007). Job insecurity and wages. *The Economic Journal*, 117(518):544–566.

Conlon, J. J., Pilossoph, L., Wiswall, M., and Zafar, B. (2018). Labor market search with imperfect information and learning. Technical report, National Bureau of Economic Research.

Du, W., Monninger, A., Qiu, X., and Wang, T. (2024). Perceived unemployment risks over business cycles.

Elsby, M. W. L. and Michaels, R. (2013). Marginal jobs, heterogeneous firms, and unemployment flows. *American Economic Journal: Macroeconomics*, 5(1):1–48.

Gertler, M., Huckfeldt, C., and Trigari, A. (2020). Unemployment fluctuations, match quality, and the wage cyclicalities of new hires. *The Review of Economic Studies*, 87(4):1876–1914.

References (cont.)

Gertler, M. and Trigari, A. (2009). Unemployment fluctuations with staggered nash wage bargaining. *Journal of political Economy*, 117(1):38–86.

Gregory, V., Menzio, G., and Wiczer, D. (2025). The alpha beta gamma of the labor market. *Journal of Monetary Economics*, 150:103695.

Hall, R. E. (2005). Employment fluctuations with equilibrium wage stickiness. *American economic review*, 95(1):50–65.

Hall, R. E. and Kudlyak, M. (2019). Job-finding and job-losing: A comprehensive model of heterogeneous individual labor-market dynamics. Technical report, National Bureau of Economic Research.

Hornstein, A., Krusell, P., and Violante, G. L. (2007). Technology—policy interaction in frictional labour-markets. *The Review of Economic Studies*, 74(4):1089–1124.

Jäger, S., Roth, C., Roussille, N., and Schoefer, B. (2024). Worker beliefs about outside options. *The Quarterly Journal of Economics*, page qjae001.

References (cont.)

Kennan, J. (2010). Private information, wage bargaining and employment fluctuations. *The Review of Economic Studies*, 77(2):633–664.

Ljungqvist, L. and Sargent, T. J. (1998). The european unemployment dilemma. *Journal of political Economy*, 106(3):514–550.

Mankiw, N. G., Reis, R., and Wolfers, J. (2003). Disagreement about inflation expectations. *NBER macroeconomics annual*, 18:209–248.

Marimon, R. and Zilibotti, F. (1999). Unemployment vs. mismatch of talents: Reconsidering unemployment benefits. *The Economic Journal*, 109(455):266–291.

Menzio, G. (2023). Stubborn beliefs in search equilibrium. *NBER Macroeconomics Annual*, 37(1):239–297.

Mitman, K., Tobias, B., Alexandre, K., and Kathrin, S. (2022). Expectation and wealth heterogeneity in the macroeconomy. Technical report, working paper.

Mitra, A. (2023). Macroeconomic sentiments and job search behavior.

References (cont.)

Mitra, A. (2024). *Essays on labor market dynamics and information frictions*. PhD thesis.

Morales-Jiménez, C. (2022). The cyclical behavior of unemployment and wages under information frictions. *American Economic Journal: Macroeconomics*, 14(1):301–331.

Mueller, A. I. (2017). Separations, sorting, and cyclical unemployment. *American Economic Review*, 107(7):2081–2107.

Shimer, R. (2005). The cyclical behavior of equilibrium unemployment and vacancies. *American economic review*, 95(1):25–49.

Shimer, R. (2010). Labor markets and business cycles.

Belief Parameters: Michigan Survey of Consumers

- Construct $\tilde{\mu}_t$, following Mankiw et al. (2003):
 - *"How about people out of work during the coming 12 months — do you think that there will be more unemployment than now, about the same, or less?"*
 - *"more unemployment," "less unemployment," "no change,", "don't know."*
- Assumptions:
 - $E(\Delta \tilde{u}_{it})$ follows $N(\tilde{\mu}_t, \tilde{\sigma}_t^2)$.
 - Interpret "no change" as a small change within a threshold c .
- Back out $\tilde{\mu}_t$ and $\tilde{\sigma}_t$ from *%more unemployment* and *%less unemployment*

$$(13) \quad \%Up = 1 - F\left(\frac{-c - \tilde{\mu}_t}{\tilde{\sigma}_t}\right) \quad \%Down = F\left(\frac{c - \tilde{\mu}_t}{\tilde{\sigma}_t}\right)$$

- Higher $\tilde{\mu}_t$: more pessimism
- Higher $\tilde{\sigma}_t$: more dispersion in beliefs

Figure 1

Firm Learning Rate

Calibration

	1978m1-2020m2 (1)	1978m1-2024m3 (2)
β_1	0.093*** (0.019)	0.144*** (0.018)
β_2	0.887*** (0.018)	0.849*** (0.018)
R^2	0.857	0.846

Regression about Reservation Wages

Reg Results

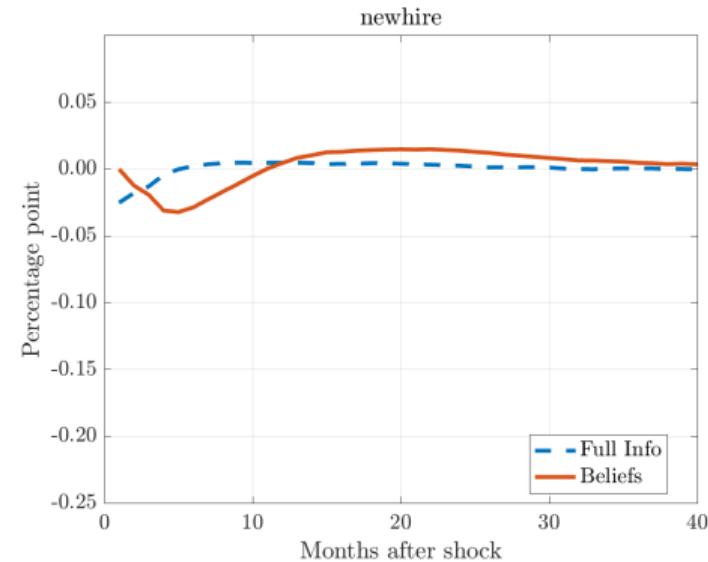
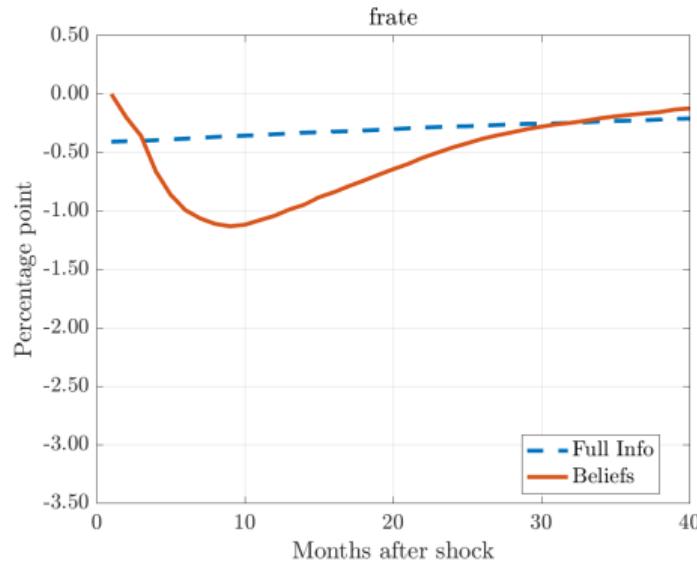
- *Q4: What do you think is the percent chance that 12 months from now the unemployment rate in the U.S. will be higher than it is now?*
- For employed *Q22: Suppose you were to lose your main job this month. What do you think is the percent chance that within the following 3 months, you will find a job that you will accept, considering the pay and type of work?*
- For unemployed workers *Q17: What do you think is the percent chance that within the coming 12 months, you will find a job that you will accept, considering the pay and type of work?*
- For unemployed workers *Q18: And looking at the more immediate future, what do you think is the percent chance that within the coming 3 months, you will find a job that you will accept, considering the pay and type of work?*
- *RW2: Suppose someone offered you a job today in a line of work that you would consider. What is the lowest wage or salary you would accept (BEFORE taxes and other deductions) for this job?*

$$(14) \log(\text{res wage})_{it} = \alpha_0 + \alpha_1 \text{Belief}_{it} + X_{it} + \epsilon_{it}$$

Business Cycle Summary Statistics

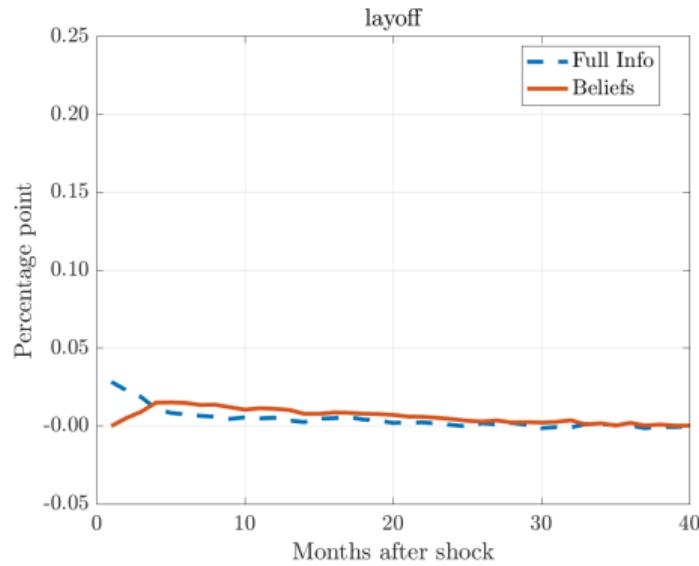
	p	u	f	s	θ
<i>Panel A: Data</i>					
Standard Deviation	0.010	0.103	0.053	0.067	0.229
Quarterly Autocorrelation	0.746	0.934	0.871	0.773	0.936
<i>Panel E: HH Learning + Dispersion + Firm Learning ($\gamma^F = 0.2$)</i>					
Standard Deviation	0.014	0.064	0.066	0.017	0.132
Quarterly Autocorrelation	0.727	0.849	0.769	0.378	0.769
<i>Panel F: HH Learning + Dispersion + Firm Learning ($\gamma^F = 0.3$)</i>					
Standard Deviation	0.014	0.085	0.088	0.025	0.176
Quarterly Autocorrelation	0.727	0.833	0.758	0.324	0.758
<i>Panel G: HH Learning + Dispersion + Firm Learning ($\gamma^F = 0.4$)</i>					
Standard Deviation	0.014	0.098	0.101	0.031	0.202
Quarterly Autocorrelation	0.727	0.818	0.731	0.272	0.731

Main results

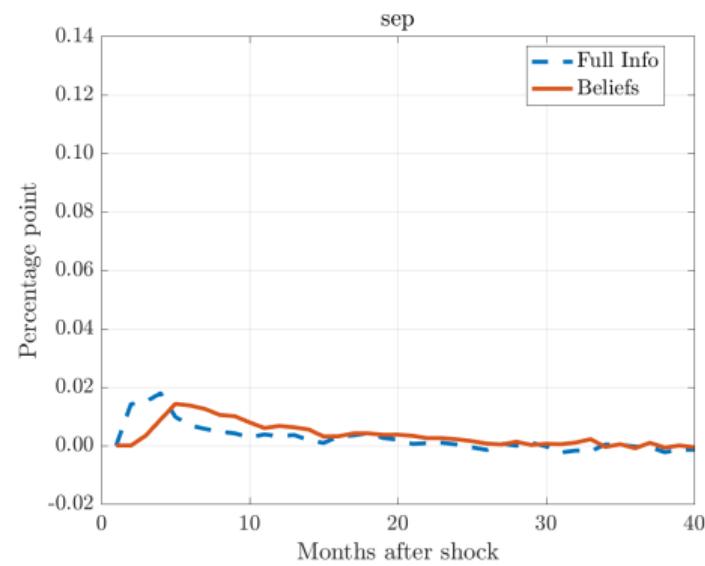


Learning for Firms

Main

- Adaptive learning for firms: $\hat{z}_t^f = \hat{z}_{t-1}^f + \gamma^f \underbrace{(z_{t-1} - \hat{z}_{t-1}^f)}_{\text{forecast error}}, \gamma^f > \gamma^w \Rightarrow \text{delay}$
- Motivation evidence: firms have more accurate and less dispersed information relative to households ([Mitman et al. \(2022\)](#))
- Same as before, firm observe the current distribution of worker beliefs
- Firm use \hat{z}^f to update the distribution of worker beliefs in the next period
- Firms make hiring and layoff decisions based on their belief:
 - Delayed response in labor market tightness, job-finding rate and layoffs
 - Smaller belief asymmetry between workers and firms


⇒ dampens the aggregate volatility

Firm Learning IRFs



Main

Firm Learning IRFs

Layoffs

Separations

Main

Mueller 2017: Evidence from CPS

Main

Panel C. Mincer-residual

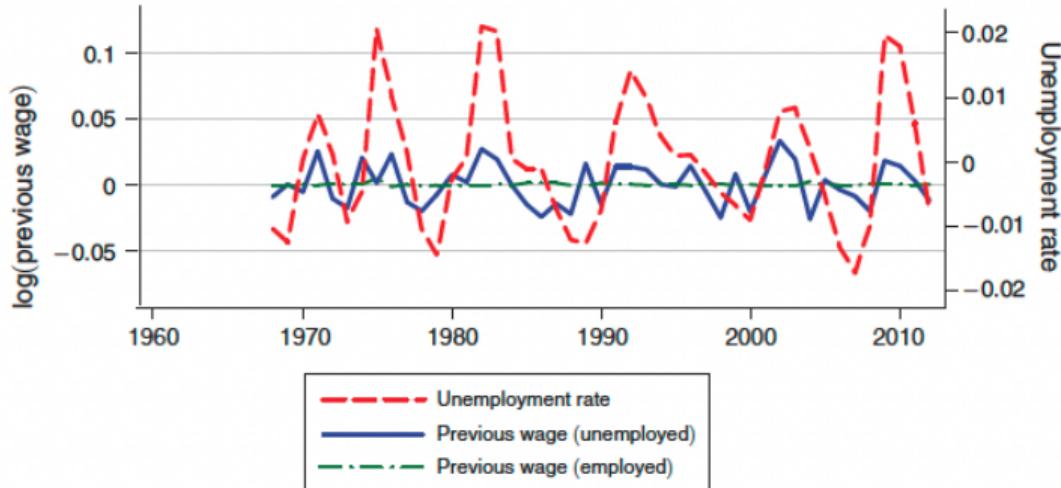
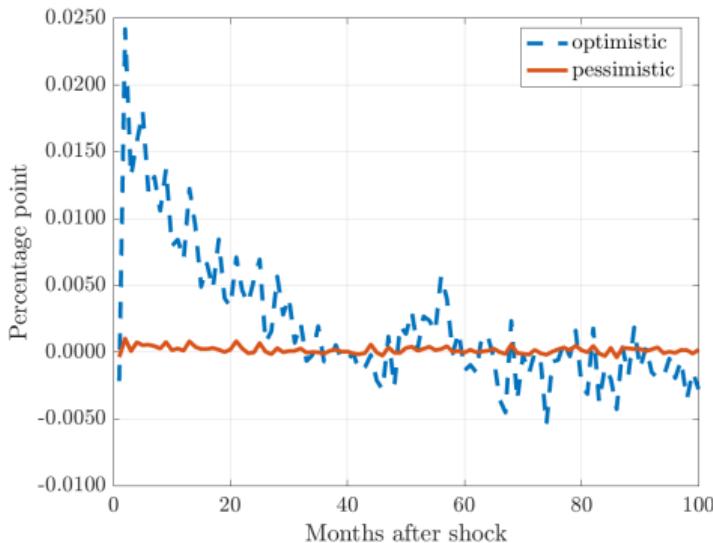
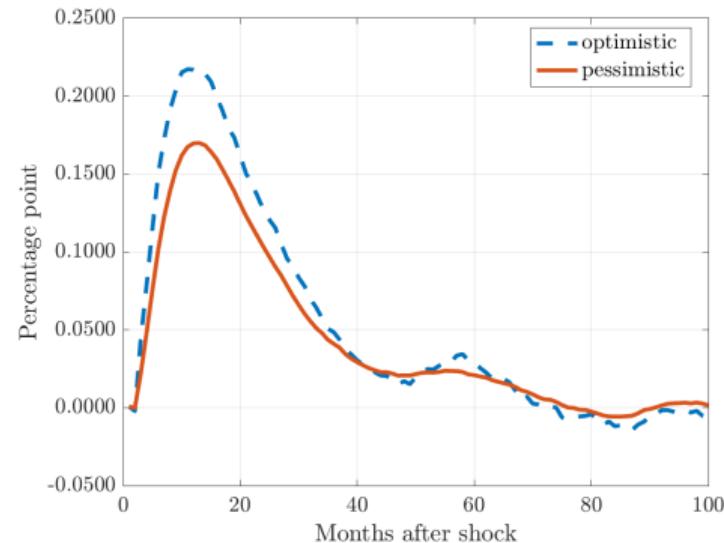


FIGURE 4. AVERAGE WAGE FROM PREVIOUS YEAR BY EMPLOYMENT STATUS IN THE CPS MARCH SUPPLEMENT, 1962–2012


Persistent biases

- Layoffs are concentrated on the optimistic workers with higher wages


Main

$$\hat{z}_{it}^o = (1 - \gamma^w) \hat{z}_{t-1}^w + \gamma^w z_{t-1} + \zeta^o + \eta_{it}$$

$$\hat{z}_{it}^p = (1 - \gamma^w) \hat{z}_{t-1}^w + \gamma^w z_{t-1} + \zeta^p + \eta_{it}$$

Layoffs

Unemployment rate